Hodge Decomposition of Information Flow on Complex Networks
نویسندگان
چکیده
Decomposition of information flow associated with random threshold network dynamics on random networks with specified degree distributions is studied by numerical simulation. Combinatorial Hodge theory enables us to orthogonally decompose information flow into gradient (unidirectional acyclic flow), harmonic (global circular flow) and curl (local circular flow) components. We show that in-degree distributions have little influence on the relative strength of the circular component (harmonic plus curl) while out-degree distributions with longer tail suppress it. We discuss an implication of this finding on the topology of real-world gene regulatory networks.
منابع مشابه
Hodge Decomposition of Information Flow on Small-World Networks
We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular componen...
متن کاملThe First L-Betti Number of Classifying Spaces for Variations of Hodge Structures
Classical Hodge theory gives a decomposition of the complex cohomology of a compact Kähler manifold M , which carries the standard Hodge structure {H(M), p + q = k} of weight k. Deformations of M then lead to variations of the Hodge structure. This is best understood when reformulating the Hodge decomposition in an abstract manner. Let HC = HR ⊕ C be a complex vector space with a real structure...
متن کاملA Hodge decomposition theorem on strongly pseudoconvex compact complex Finsler manifolds
In this paper, we prove that the Hodge-Laplace operator on strongly pseudoconvex compact complex Finsler manifolds is a self-adjoint elliptic operator. Then, from the decomposition theorem for self-adjoint elliptic operators, we obtain a Hodge decomposition theorem on strongly pseudoconvex compact complex Finsler manifolds. M.S.C. 2010: 53C56, 32Q99.
متن کاملIntroduction to Hodge Theory
This course will present the basics of Hodge theory aiming to familiarize students with an important technique in complex and algebraic geometry. We start by reviewing complex manifolds, Kahler manifolds and the de Rham theorems. We then introduce Laplacians and establish the connection between harmonic forms and cohomology. The main theorems are then detailed: the Hodge decomposition and the L...
متن کاملIdentifying Vector Field Singularities Using a Discrete Hodge Decomposition
We derive a Hodge decomposition of discrete vector fields on polyhedral surfaces, and apply it to the identification of vector field singularities. This novel approach allows us to easily detect and analyze singularities as critical points of corresponding potentials. Our method uses a global variational approach to independently compute two potentials whose gradient respectively co-gradient ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014